Engineering Safety and Security in the era of the Industrial Internet of Things

Dr Robert Oates

© 2017 Rolls-Royce plc

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc.

This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies.

Trusted to deliver excellence

Private – Rolls-Royce Proprietary Information

Talk Structure

- Who am I?
- What is Product Cyber Security?
- Why is it important to understand the interactions between safety and security?
- How do safety and security interact?

Product Cyber Security Team

Sources of Product Cyber Security Risk

Cultural Sources

Attacker Capability / Motivation

Technical Sources

Technical Sources of Risk

Higher Performance Systems

Hyperconnectivity

COTS

Big Data

Technical Cyber Risk

6

Private - Rolls-Royce Proprietary Information

Attacker Capability – Who is attacking?

CNI Attackers (From GAO):

- Nation states
- Terrorists
- Industrial spies and organised crime
- Hacktivists
- Hackers

8

Attacker resources

9

What can we do about PCS Risk?

Risk Driven Design Processes

Secure Development Objectives

Security requirements across all sub systems to ensure that the system is secure at the system level

The argument that the system is secure, through life

Active security features/subsystems that detect and react to intrusions

14

Changing Cultures

Security is everybody's responsibility

Routes to escalation

Incident response planning

Security Champions

Communication

Private - Rolls-Royce Proprietary Information

Changing Cultures

Proportionate, risk-based controls

Keep costs down

Keep risks down

Understand risk

17

Private – Rolls-Royce Proprietary Information

Product cyber security is a risk source that needs to be addressed

Can a software intensive system be deemed **safe** if it isn't **secure**?

The Enemies of Safety / The Results of Attacks

Non-determinism

Uncontrolled change

Poor communication/understanding

≠ SECURITY

CRYPTO

Private - Rolls-Royce Proprietary Information

Risk Driven Design Processes

Statement 2

Understanding the link to safety can make things

- 1. Safer
- 2. More secure
- 3. Cheaper

Risk Direction: Safety

Private - Rolls-Royce Proprietary Information

Risk Direction: Security

Rolls-Royce

Design Principles in Opposition: Diversity

Understanding Risk

- System level quality factors
- Through life quality factors
- Preventing harm
- Design principles
- Risk driven design change
- Controls that are proportionate to risks

Technology

Resist

Detect and React

Network architecture

- Interface control
- Firewalls
- Data diodes
- Segregation

Protocol Selection

Cryptographic techniques

- Cryptographic agility quantum!
- Legal issues

Multi-source localisation

Manual override

IDS

- What is normal?
- Interaction with watchdogs
- Does
- "Adaptive" = "Non-deterministic" ?

Logging

Review processes

Reactions

- Security responses shouldn't compromise safety
- Safety responses shouldn't compromise security

...but there are things missing.

Systems Engineering for Safety and Security

- Is a truly common risk model possible?
 Efficient Incident Response
- Design for Forensics
- Team members

Intelligence Focus

- Where do you get threat intelligence from?
- How do you embed live intelligence into an engineering/maintainance process?

The interactions are complex. Some solutions exist, but there is a way to go

Private – Rolls-Royce Proprietary Information

In Conclusion

- 1. Product cyber security is a risk source that needs to be addressed
- 2. Understanding the link to safety can make things
 - 1. Safer
 - 2. More secure
 - 3. Cheaper
- 3. The interactions are complex, solutions exist but there is a way to go

